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Abstract. The problem of a relativistic particle with an arbitrary spin has had an old and
distinguished history, particularly if the particle is free or interacting with an electromagnetic
field. Recently a new type of interaction, denoted as the Dirac oscillator, has been introduced,
first for a particle of spin% and later for spins 0 and 1, and it has suggested a possible
generalization to arbitrary spin. Following a procedure originally developed for a system of
n particles with spin% with a Dirac oscillator interaction, we have derivedsiagle particle
equation with spins in the ranggs, 2n—1,..., 3 or 0 and through a symmetric representation
of the permutation group restricted it to sp}n. We have solved the resulting equation explicitly
by reducing it to an algebraic one in the eneigywhose coefficients depend on the number of
quantanN, the total angular momentum and the frequencw of the oscillator. Properties of

the energy spectra will be discussed for sp%;qsl, g

1. Introduction

The problem of a relativistic particle with arbitrary spin has had a long and distinguished
history, particularly when the particle is free or interacting with an electromagnetic field
[1-4], although even at the present date open questions remain in relation to this problem.

Recently a renewed interest in the subject appeared when it was shown that relativistic
particles of spir% could be acted on by a simple type of potential to which Moshinsky and
Szczepaniak [5] gave the name of Dirac oscillator. The reasoning leading to this interaction
parallelled that of Dirac that linearized the quadratic Klein—Gordon equation. If an oscillator
interaction, quadratic in the coordinates, is added to the latter it suggests that linearization
could be achieved if the momentumin the free particle Dirac equation is replaced by
some linear combination gf andr, where the latter is the position vector. In this way one
arrives at the equation [5]

i(@y/ot) = [a - (p —iwrp) + BlY (1.1)
in which the units used are those where
h=m=c=1 1.2)

with m being the mass of the particle andhe velocity of light anda, 8 are the 4x 4

matrices
—(27) (a2

with o being the vector whose components are the Pauli spin matrices whigethe
frequency of the oscillator in the units mentioned in equation (1.2).
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Actually, an equation of the form (1.1) had been considered before [6] its appearance in
[5], but it did not lead to further applications, while the Dirac oscillator [5] is now referred
in an extensive literature, both in its one- [7] and many-body versions [8].

While equation (1.1) does not look explicitly Lorentz invariant, it can be shown to have
this property with the help of a unit timelike four vector as indicated, for example, in [9].

Thus a relativistic equation for a particle of sp%nwith a Dirac oscillator interaction
became available, but it raised the question of whether similar equations could be obtained
for spins different frorr%. One was aware, from the work of Kemmer [3] and others, that
relativistic equations linear in the four momentum of the particle were available for spin 0
and 1. Using this fact and the reasoning that led to the Dirac oscillator Nedjadi and Barret
[10] arrived at relativistic oscillator equations of spin 0 and 1.

The availability of what we shall continue to call Dirac oscillators, but now of spin 0 and
1, beside%, immediately raises the question of whether the concept can be generalized to
arbitrary spin. The free-patrticle relativistic equations of arbitrary spin have been proposed
but they either involve bothersome constraints or start from as many Dirac equations as that
which are required to get the desired spin from its origiglajalue [4]. Thus we decided
to follow a different procedure based on our use of Barut's approach [11] for a single
relativistic equation for the many-body problem [12]. Instead of many particles we shall
consider in the next section the approach mentioned &ingle particle but with arbitrary
spin, and later introduce into the equation the Dirac oscillator interaction. Our results will
be discussed in a general way but then analysed in detail for gpihs3.

2. Relativistic equations for arbitrary spin

It is well known that if in a non-relativistic problem we have several states of %[we

can, by direct products, get a state of higher spin. As the Dirac equation corresponds to a
relativistic particle of spir% and in it there appear matrix componepts, u = 0, 1, 2, 3,

of a four vector, related to the;, g of (1.3) by

v'=8 v =Ba i=123 (2.1)

we can expect that by direct products of thedewith different indexess = 1,2, ..., n,
ie.

V=181 - 210y"®1® -3 (2.2)

we could obtain relativistic equations of higher spin. Note that in (2.2) we have direct
products of 4x 4 unit matrices and in the positiory the y#. Also the metric tensor we
shall use in the present paper will be of the form

guw =0 w#v 811 = go2=g33= —goo = L. (2.3)

How do we combine they/* so that we get a single relativistic equation that contains
an arbitrary spin and represents either a free particle or one in a Dirac oscillator?

For the purpose indicated in the previous paragraph it is convenient to recall Barut's
procedure [11] for obtaining single many-body relativistic equations from field theory,
which inspired the approach of Moshinskyal [12] which starts with a Lorentz invariant
formulation of the free-particle many-body problem. It is convenient in the approaches
mentioned to introduce first a timelike unit four vecigy, u = 0, 1, 2, 3, which implies
that there is a frame of reference in which it can take the value

(u,) = (1,0,0,0). (2.4)
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With the help of this four vector and the* of (2.2) we can define the Lorentz scalars
I = l_[(y,,“u#) I, = ()/f‘uu)_ll" (2.5)
r=1

where repeated Greek indexgsare summed over their valugs = 0, 1, 2, 3. Note that
(ys“uﬂ)*l in Ty just eliminates the corresponding termlinand thusl is still in product
form.

In [12] we showed that with the help of the Lorentz scalar operdtgrand they,*, as
well as that of the four momenta of theparticles, it was possible to getsingle Lorentz
invariant equation for the non-interactingbody system, and later we extended it to include
Dirac oscillator interactions. In the present problem we wish to consider only one particle
and thus we have the single four momentpm © =0, 1, 2, 3. However, we want to have
a formalism in which spin acquires arbitrary values, and this suggests we use equation (3.29)
of [12] but take all the momenta equal which leads, in our units, to the Lorentz invariant
equation

n

> Tslpu+ Dy =0. (2.6)
s=1
It is useful noting, as in [12], that for an equation (2.6) corresponding to a many-body
problem wherep,, is replaced byp,, s = 1,2, ..., n, the unit timelike vectorx,) has a

clear physical and conserved meaning as it becomes the normalized four momentum of the
whole system. As this interpretation is not valid for the single particle of equation (2.6), it
would seem at first sight to make the appearance the(e,ofa completely formal device.

This is not though the case because, while we shall consider in the analysis given below
a (u,) that has the valugl, 0, O, 0), its presence would allow us to write the solution of
equation (2.6) also in any other frame of reference by a boost associated with the components
of (u,) in this new frame [9].

At this point it is worthwhile remarking that as long ago as 1939 Kemmer [3] noted that,
except for the factof’y and forn = 2, an equation similar to the above, (in equations (54)
and (55) of [3]) could represent particles of both spin 0 and 1. It would thus be reducible
with respect to spin but no longer restricted to sg)irWe shall show later that we can limit
the solution of equation (2.6) to a definite spin by making use of its invariance with respect
to permutation of the index, and restricting ourselves to a definite irrep of the later group.

Before analysing equation (2.6) in the frame of reference in whijchakes the form
(2.4), it is convenient to consider, in the Lorentz invariant form, the generalization of the
former equation to include a Dirac oscillator interaction. For this purpose we first define
the transverse part of the position four vectgras

X1y =x,+ (uuy, (2.7)
which of course will have the property that whep takes the form (2.4), and using the
metric (2.3),x,0 = 0 and only the spatial part of the vector;, i = 1, 2, 3, remains.

If in equation (2.6) we replacg, by p, —iwx,,I', which is similar to what is done in
equation (3.36) of [12], as well as for the spatial part in equation (1.1) of the present paper,
we then get the Lorentz invariant expression

n

Z Loy (pp —i0x,T) + 1]y =0 (2.8)
s=1

which will be our fundamental equation for discussing the Dirac oscillator with arbitrary
spin.
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We now wish to write equation (2.8) in the frame of reference in whightakes the
value (1, 0, 0, 0) because, as shown in [12], it is the simplest one in which we can carry
out our analysis. Clearly equation (2.8) then takes the form

{nFopo + Z [, - (p — iwrB) + l]}l/f =0 (2.9)
s=1
with
r=[[w=pep2p0 -0p=B  I’=@E)T° (2.10)
r=1

and~,, p, » now being ordinary three component vectors. MultiplyingItfyand making
use of relations (2.1), as well as of the fact that the dependenaé oan be of the form
exp(—i Ex%) with E being the energy, so thab exp(—i Ex®) = —E exp(—i Ex?), we finally
arrive at the expression

Y la, - (p—iorB) + B]¥ =nEy (2.11)
s=1
for the equation with Dirac oscillator interaction. In the case of the free particle we just
have to taken = 0 in (2.11).
We note immediately that equation (2.11) is invariant under permutation of the index
of the a; and 8; matrices and this applies also Bowhich could be written as the product
B=p1p2... By
However, note that we should be careful about what we understand as permutation of
the indexes. If we have, for exampke= 3 then

a1=(£1 ”01)®((1) ?)@(é ?) (2.12)

and if we apply to it the transposition ,[3] we have to change the index of tles from
1 to 3, but also interchange the matrices in the direct product so that we get

[1,31a1=<{) ‘,’)@)({) ‘,’)®(;’3 ‘33)=a3. (2.13)

Under this type of operation it is clear that equation (2.11) remains invariant.

In the next section we shall proceed to discuss the solution of equation (2.11) so as to
obtain the energy spectrum, assuming wavefunctions are symmetric under permutation of
the states, which guarantees, as Bargmann and Wigner [4] showed, that we are dealing with
states of spinn/2).

3. Eigenvalues and eigenfunctions for a Dirac oscillator with arbitrary spin

Starting from equation (2.11) we shall discuss the procedure of obtaining the eigenvalues
of the energy as a function of the number of quaNtand the total angular momentuyn
when the wavefunction is completely symmetric under interchanges of the type indicated
in (2.13), where the latter restriction was considered in the work of Bargmann and Wigner
[4].

We begin by taking a wavefunction in terms of indexes that indicate large and small
components, and later rephrase the whole problem in terms of matrices.
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3.1. The componenig,,,, ., of the wavefunction

When considering the problem of equation (1.1) where the spin %N&ﬂ? proposed a
solution [5]

V= <K;) exp(—iEr) (3.1)

wherey,, T = 1, 2, depend only on the coordinates. We immediately arrived at a solution
of the problem, as the effective Hamiltonian [5] turned out to be that of an oscillator with
a strong spin—orbit term.

The above experience suggests that for arbitrary spin, i.e. in equation (2.1}, the
should have: indexesrt instead of a single one and thus its components could be denoted
by [13]

wflfg...‘[,, (3'2)

where allt;, s = 1,2, ..., n, take the value 1 or 2. Note that thé&s arenot spinor indexes
but rather indicate, for example, for positive energy, the large or small character of the
wavefunction [5] associated with the index

We now wish to see the effect of the operat@&sg,, «; appearing in (2.11) on the
components of the wavefunction indicated in (3.2). Itis clear from (2.10)Rhahen acting
on an indext;, s =1,2,...,n, gives 1 ift; = 1 and—1 if 7, = 2, thus corresponding to
the phase facto(—1)1*. For the set of all indexes we thus have

Bwtl...‘f” = (_1)n+71+72+“‘+7-'n I/fflfz...f,l . (3'3)
The effect ofg, (whose definition is as that of* of (2.2) whenu = 0) is clearly given

by
ﬁswrl...rx...rn = (_l)l+rswf1...fs...fn- (34)

For oy whose expression is given in terms of a direct product similar to that of (2.2),
we see that it acts only on the indey and if r, = 1 (or 2) it transforms it intor, = 2
(or 1) and at the same time applies the Pauli matrix opeeatdp . Introducing then the
2 x 2 matrix ||}, &, T = 1, 2, by the definition

€1 =e2=0 e=e=1 (3.5)

we see that we can write
2

(e X wrl...rd...rn = Zei—: U.M/fq...x...rn~ (36)

=1
We also have in (2.11) the product of operatersB appearing in relation to the
interaction term proportional to the position vectorlts effect ony,,, ., can be obtained
by remembering that the matrix product of the operators has to be applied in reverse order,
as indicated in equation (3.10) of [13]. Thus we arrive finally, from (2.11), at the fact that
the components,, ., of ¢ satisfy the equation

n 2 n
Z Z{eias ° [p - iwr(_l)A_T‘Y-FA]wrl...)».ur,,} = |:nE - Z(_1)1+f‘yi|W'L'l...rv...r” (37)
s=1

s=1 A=1
where
A=n+1+10+ - +71 (3.8)

Note that if we want to pass from the Dirac oscillator to the free-particle problem, all
we have to do is to pub = 0 in equation (3.7).
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Forw > 0itis convenient to separate equations (3.7) into two sets depending on whether
A of (3.8) is even or odd. For this purpose we start by defining creation and annihilation
operators

n = (1/vV2)(0¥*r —iw~Y?p) £ = /V)(r +i0?p)  (3.9)

and also, to avoid the appearance of the imaginary factor i, we redefing, the terms of
the wavefunctionp,,., ., as

l/fnrz...rn = ¢r1rz...rn for A even (310)
1//1:11:2...1:,, = _i(prlrz...r,l for A Odd (311)

with A given by (3.8). We see then that equation (3.7) can be expressed in terms of the
following two equations:

n 2 n
Z Z 62[@(03 ° 77)]4511...,\..1" = |:I’lE + Z(_l)ni|¢rl...rx...r,, (312)
s=1

s=1 A=1

n 2 n
Z Z Ei[@(as * 5)](]51:1...)\..41:,, = |:nE + Z(_l)rsi|¢r1.“rs...r,,- (313)
s=1 1=1 s=1

In equation (3.12)¢., ., on the right-hand side correspondsAoeven, while on the
left-hand side is odd; in equation (3.13) the correlationice versa

So far we have determined the equations (3.12) and (3.13) for the wavefugpgtion
defined in equations (3.10) and (3.11), with the indexes =1, 2, ..., n, which take the
valuest, = 1 or 2. In the next subsection we will rewrite equations (3.12) and (3.13) in a
more compact way, and introduce a recurrence procedure that allows their derivation in a
simpler form for arbitraryn.

3.2. The matrix formulation of the wave equations

When dealing withp,,, -, with A of (3.8) either even or odd, it is useful to order them in
a definite way. A convenient procedure fareven is to introduce firsp,, . in which all

7,'s equal 1, i.e¢111. 1, and continue introducing the terms= 2 in such a way that the
indexes, taken together as a single number, increase all the timeAwiémaining even.
For A odd we start withp,1 1> and follow the same procedure. Thus, for example, when
n = 3, we have the two sets

o111 112
8 212 s @211 ( )
@221 $222

where®3, ®; correspond ta\ even and odd, respectively, and the subindex 3 reminds us
of the numbem = 3, i.e. that our component wavefunctions are of the fgrm, ...

Our first objective will be to indicate how we can reldb¢ to ;- , so that later we can
derive a recurrence procedure for the matrix representation of equations (3.12) and (3.13).
We note thatb and®;- , have 2-* and 2 components, respectively. We could gef, ,
if we add an extra index 1 or 2 firgt ®; or ®;, respectivelyand consider the set together
in the order that they are mentioned. FBJ, , we have to add an index 1 or 2 firist ®;;
or &, respectivelyand again consider the set together. This procedure, when applied, for

example, to
wi-[f] e [3 019
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gives us immediately the séﬁ in (3.14). Itis also clear that in this way the set of indexes,
taken together as a single number, continues to increase as we go down the column defining
3.

What is the matrix formulation of the set of the two equations (3.12) and (3.13) now?
We start by defining certain submatrices that will be required, in a notation involving the
indexest,, i.e.

M,(v1...v,) = (3.16)

n
DGR Bl 8T
s=1
wherev, is defined by

v, = V2w(o - ) (3.17)

and if ;15 . . . 7, corresponds to an even (odd)of (3.8) then obviously, from the definition
(3.5) ofef;‘, we have that;7,...7, corresponds to an odd (even). For each of the two
possibilitiesM, (v ...v,) is a 27 x 2'~! matrix. We further define the matrices

D} = H LSy (3.18)
s=1

where thex sign corresponds to the situation whboth 7175...1, and rj7;... 7, are
associated with even or odd. Again D are 2-1 x 2*~! matrices but diagonal and
numerical.

Now looking back to our equations (3.12) and (3.13) we see from the definitio®s of
and (3.16) and (3.18) that they can be written in the matrix notation

D; M,(vi...v,) || ®F | _ &
[MT(vl...vn) D, i| |:vl>i| ke |:q>] (3.19)

n n

whereM' is the Hermitian conjugate d¥ with £ replacings.

From (3.18) the matrice®* are very easily written down for the enumeration
procedure we followed for the components®f. For the matrixV, (v; . . . v,) the explicit
determination is more complex and the best way of obtaining them seems to be a recurrence
procedure.

For this purpose we propose to correlate matrddgs; (v1 . . . v, v,41) With M, (v1 ... v,).

From the enumeration procedure we outlined in the paragraph between equations (3.14) and
(3.15) we see that iM,1(vy ... v,v,41), defined in a way similar to (3.16), the term
vieRS2 8T (3.20)

12 Tn+1

changesr; = 1 or 2 intot; = 2 or 1. Thus, in<I>j[+1 the terms coming fron®;" when
we add to it an extra index 1 in the first position turns into terms coming fgmwith
an extra index 2 in the first position, and similarly when indexes 1 and 2 are interchanged.
Thus, the term (3.20) transforms the first part<I!)jf+1 into the second and applies to it the
operatorvy, and has a similar effect fob, ,,. The other terms i, 1(v1...v,41), i.€.

8. vgel . 80 §s=2,3...n+1 (3.21)

Ts Tn+1

do not affect the first index inI>,jf+l so they transform the first (second) part into the
first (second) part but now acting with operaigrthat are increased by one position, i.e.
v; — Us41 @S compared with the situation fdr:. Thus we get the recurrence relation

_ Mn(UZ cee UnJrl) vll
Mur1(v1... vp41) = [ vl M, (v, ... Un+l)] (3.22)
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wherel is the unit 2~ x 2"~1 matrix andM, has the same dimension whiVg, 1 (v . .. v,41)
is a2 x 2" matrix.

The same developments hold of course for the hermitian conjugate matrix
MiH(vl ... Uy41) ONly replacingv, = V2w(o, - n) by vj = V2w(o, - £).

We are now in a position to write the matrix operator equation (3.19) explicitly starting
with n = 1 and from it going to: = 2, and from the latter ta = 3 etc. The next point is to
reduce equation (3.19) to a purely numerical one that allows us to get both the eigenvalues
E and the eigenfunctions.

3.3. Numerical matrix expression for our problem

The first thing we notice in equation (2.11), and which holds also for its matrix form
(3.19), is that it depends on a single position veatpiand its corresponding momentum

p = —iV, but that it has many spin operatars, that appear in thex,. As each of these
spin operators is associated with the vag.lef the corresponding observable, it suggests
that equation (2.11) is in fact reducible in the spin and could have the following values of
this observable,

ot —1,..., 2000 (3.23)

depending on whethet is even or odd. This is in fact the case, as mentioned after
equation (2.6), when commenting on an observation of Kemmer [3].

It is possible to show, by a projection procedure on the permutation group, that we
could restrict the most relevant component¢of;, ., i.e. ¢11.1 (corresponding to all the
large components for positive energy) to the sgifi2). To implement this procedure we
first note that, writing equation (3.19) explicitly, we can elimindtg and get for®;" the
equation

M, (v1...v,)(El —D;) *Mi(vy...v,)® = (nEl — D;)®; (3.24)
which clearly commutes with the operator
N=n-¢t. (3.25)

Also, as (3.24) contains only operators of the fosm= v 2w(o - 1), ol = V2w(o, - &),
it also commutes with the total angular momentum operator

J=L+S (3.26)
where

L=rxp=—-inx§) (3.27)
and S is the total spin

S=G)o1+0o24 - +0,) (3.28)
where again ther; are given by direct products

0, =IQI®---RIQRRJIR® Q1 (3.29)

with o in the sth position andl being a 2x 2 unit matrix.

Thus the numbers/, j(j + 1), m corresponding to the eigenvalues of the operators
J?, J. characterize the solution of equation (3.19).

From the considerations of the previous paragraph it is clear that the compdrents
could be expressed in terms of the kets

INCE, 5)jm; wfr) = (Cu, sl jm)Rye(r) Yo (6, 9) xso (wfr) (3.30)

w.o
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with { | ) being a Clebsch—Gordan coefficie®,,(r) the radial function of the oscillator,
Y., (6¢) a spherical harmonic angélbeing the orbital angular momentum restricted by the
conditions

lj—s|<e<j+s (DY = (-D". (3.31)

The interesting part is the spin functign, (wfr) which is formed fromn terms of value
%. Clearly forn > 2 they require a further characterization and one way of doing this is
to associate with them, apart from the valuef the spin, a partitionf = [f1f2... ful,
fi+ f2+---+ fu = n, corresponding to an irrep of the group of permutations of the spin
indexes and also a Yamanouchi symbol However, sometimes a given partitigh can
appear more than once, and thus we introduce also the extra indexhe spin state.

For fixed N, j, m, the components oP;" can then be written as

Z aflfz...f,,(gvs’w? f1 r)lN(E’S)jm? wfr) (3'32)
L,s,w, for
where the indexess, 12, ..., 7, correspond to an even of (3.8). For®, we have, on

the other hand, that it should have one quantum less @aras operators of the type
vy = +/20(0os - 1) are applied to it and thus they can be written as

Y ann.o s, w, f,r)IN =L s)jm; wfr) (3.33)

L,s,w, for

where the corresponding of (3.8) is now odd.

We now note that equations (2.11) or (3.19) are invariant under permutations, but in the
sense we discussed between equations (2.12) and (2.13). Thus any permRitapphed
to our states (3.32) and (3.33) is really a product

PP, (3.34)

where P, is the permutation of the indexes, 1, . .., 7, of the coefficientz, while P, acts
on the spin functiorny,, (wfr) in the ket. The effect of the permutation on the coefficient
indexes ina, is immediate, for example

[17 Z]arlrzrg...r,l = A4y, (335)

where [1 2] is the transposition indicated. On the other hand,

[L. 2o wfr) = Y oo (wfF)D}([1,2)) (3.36)

where the matri}| D-,f,([l, 2)) | is the representation of [2] characterized by the partitiof.

We plan, in future publications, to project from our solutions the spin states associated
with the different representations of the symmetric group. In this paper though we shall
consider only thesymmetricrepresentation as it is the simplest to use and, for a given
gives the largest corresponding spin, ke= n/2. To implement our objective we have to
apply to our states the symmetrizer operator

P=) PP, (3.37)
P

which is summed over all permutations.
To obtain the projected part in the simplest possible way it is convenient to note that
the indexest; are dichotomic variables. If we had substituted themahydefined as
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A, = [, — 3], thena, = —3 or 5 whent, = 1 or 2. Thusi, behave just as the spin
variables that also take the vaIu%sor —%. We could then make the transformation
A’ frr = Z Mt)»w’f/r/,t]_‘tz...‘[y,a‘tl‘tz...‘[,, (338)

T1...Ty

where M is a numerical orthogonal matrix of exactly the same form as in the spin case. In
(3.38) ¢, A play the role that, o have for the spin case, and f'r’ have for ther indexes

the same meaning that, f, r had for the spin indexes. In this way the component®gf

can be written as

¢tkw’f’r’ = Z at)»w’f’r’(ga s, w, fv r)|N(£’ S)jm; wfr) (339)
Lsw, for

(pt)\w’f’r’ = Z atkw’f’r’(z_a s, w, f7 }’)|N - 1(E7 S)jm; wfr) (340)
Ls,w, for

where in (3.39) and (3.40) are respectively selected in such a way that they come from
7172. .. T, corresponding to even or odtl of (3.8). In fact from the relation; = [z, — g]
mentioned above we have=[A — (51/2)].

If the full matrix appearing on the left-hand side of (3.19) is denotedPbhyand the
full wavefunction associated with (3.39) and (3.40)bywhile the matrix whose elements
appear in (3.38) is written a81, then equation (3.19) becomes

MDMV = nE¥ (3.41)

with ~ indicating a transposition.

So far we have given our functions of (3.39) and (3.40) in their most general form
but, as we have said before, we are only interested in the ones which are projected to the
symmetric representatiom] of the permutation group, i.e. in the wavefunction resulting
from the application to the’s of (3.39) and (3.40) of the projection operator of (3.37).
From standard representation theory [14] we then find, for example, for the term in (3.39)
that

Pd)tkw/f’r’ = Z Z {[Ptatkw/f’r’(gy s, w, f’ I’)][PU|N(£, s)jm; T,Ufr)]}

P lsw, fr
=> Y {aﬂw/f;«z, s.w, f.P)IN(E, 8)jm; wfF)y D-r-fi;«P)D;’;(P)}
r'r s, for P
n! . -
= E(Sff/(srr’ Z atkw’ff(& s, w, f7 r)lN(Ea S)va wfr) (342)
£s,w, f,r

where we used the well known relation [14]
7 fx n!
Y DL(PYDL(P) = =87 78,577 (3.43)
P dr -

wheren! is the number of elements in our permutation group dpdhe dimension of the
representation characterized by the partitifonNote that as the unitary representations of
the permutation group are real, the conjugate symtkiol(3.43) can be suppressed and this
was the form used to derive the right-hand side of (3.42). A similar relation to (3.42) holds
when we applyP to the¢ of (3.40) instead of (3.39).

Note that if in the projected representations we deal with= [n], i.e. the symmetric
representation of the permutation group for the coefficientve see from (3.42) that the



The Dirac oscillator of arbitrary spin 4227

spin part also corresponds Jo= [r], and this can only be achieved if the total spimj®
as, for its highest projection, we have

which is obviously symmetric under permutations.

Thus, in the old notation, the;1; 1 which corresponds to the part involving only large
components when the energy is positive, as it is symmetric under exchangerdfttexes,
canonly have spin£/2), and this is why we have given the present paper the title of Dirac
oscillator with arbitrary spin, as our formalism can be implemented, in principle, forany

To reduce the matrix operator equation to its numerical form, we will then only need
to deal with matrix elements all of which can be reduced to the form

(N, s)jm, wfrlv2we, - q|N — 1L, 5) jm, w fF)
= (=)W (eess; 1)[(2¢ + 1)(2s + 1)]Y2V2w(NL|n||N — 1€)
x (s, wfrlo |5, wfr) (3.45)

where we have used a well known relation of Rose [15], Wittbeing a Racah coefficient,
and where the reduced matrix element of thhas the expression [16]

(N + ¢+ 1)e]"? (N — o) +1)7Y2
725 +1 20—1 —2£ 1 e+1-

The reduced matrix element eof is trivial for n = 1 or 2, but for larger values it requires
a more complex Racah algebra analysis, which will be indicated in the specific cases to be
considered later.

As a last point in our general discussion we notice that in (3.24) parity would also be
a good quantum number as the equation remains invariant if we interchangewith
—n, —&. Thus in our procedure we will have two cases: one in which we start with
{=j+ @®/2),soN andj + (n/2) have the same parity, and we include all the ottier
by subtracting multiples of 2; the other when we start wite j + (n/2) — 1 and a similar
analysis holds.

All the general steps we have outlined in this section will become clearer as we discuss
the examples wite = 1, 2, 3 in the following section.

(NL|InlIN — 1¢) = [ (3.46)

4. Examples

Our procedure obviously does not apply to the case of spin 0 as it would impiyO,
but this case has already been discussed in [10] using Kemmer’s [3] formalism and, in our
units, gives the expression

E?=1+2wN (4.1)

with the wavefunction being that of the standard harmonic oscillator, i.e. equation (3.30)
with n = 0. Note that in the following analysis we will be interested onlypositive
energies which will be close to 1 ifo « 1 and significant as they have no contribution
from the negative energy part. Thus for spin O the energy we shall consider is

E =1+ 2wN)Y2~1+ N 4.2)

where the right-hand term holds in the non-relativistic limit, i.e. when, in our uitg; 1.
Our starting point will then be = 1.
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4.1. Spinj

Taking into account the definition of the matrices in (3.16) and (3.18) it is clear that for
n = 1 they become Xk 1 matrices and equation (3.19) takes the form

[vll 311} [iﬂ :E[Zj (4.3)

where @, ®; also have one component, and, following the enumeration procedure
discussed between equations (3.14) and (3.15), they could be denoted $y as they
appear in (4.3). From equation (3.1%) = v/2w (a1 - 1), vl = v2w(o1 - £).

To find the values of the energy we have to discuss the two alternatives mentioned at
the end of section 3. In the first case

$1 = a1]+) $2 = az|—) (4.4)
while in the second

¢1 = ajl-) ¢2 = ay|+) (4.5)
where we shall use the short-hand notation

£) = ING£3,0jm) B =IN-1(=£3 3)jm) (4.6)

noting that we employ angular kets when the number of quantg, isnd round kets when
itis N — 1.

Substituting expressions (4.4) into (4.3), and multiplying the equations resulting from
the first and second rows by the brg's|, (—|, respectively, we get the numerical matrix

equation
1 (Floal=) a1 | _ | @
[(—IUII—H -1 :| |:a2:| _E[az]‘ @.7)

From hermiticity consideration6—|vi|+) = (+|v1]—), and since the latter was calculated
in (3.45) and (3.46) we only have to add the fact that

(3lloulld) Galoonl33) 2 (4.8)
= 1ll5) = = = .
20 (33,1033 ¢

where the denominator is a Clebsch—Gordan coefficient and the numerator is obviously 1.
Thus we obtain

(+Hlv1]=) = V2w (N + j + Y2 (4.9)
A similar analysis, when we substitute (4.5) into (4.3), gives the numerical matrix
equation
/ /

[<+|vli|—> | |311|+>} [Zﬂ -t [Zi] (*.40
where

(+lvjl=) = (—lval+) = V2o (N — j + })2. (4.11)
From (4.7) and (4.10) we get, respectively, for the energy the secular equations

E?=1+20(N+j+3) (4.12)

E>=1420(N —j+3) (4.13)

which are precisely the results derived in [5] for the Dirac oscillator of épirh)ut now
obtained through a procedure that can be applied to any values of the spin.
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As discussed in [5] and [17], the values @fw) 1(E? — 1) have a finite or infinite
degeneracy, depending on whether we consider the expression (4.12) or (4.13), respectively,
and they are plotted in figure 1. These degeneracies can be explained by an SO(4) or
SQ(3, 1) symmetry group, respectively, as discussed in [17].

A

(7,1 6,20 15,31 (4,4)

- ——— - - v=3

(8,9) (9,4) (10,2) (11,3)  (12,4)
8 ) 1 ) ) 1 veer nza4

(5,1) 4,2) (3,3

e e - .- v:=2

P I B B IR 7 B L. R

(3,1) (2,2)

—_——- = v=i

(4,00 (5,10 (6,2)  (1,3)  (8,4)

-(.'-'-!-)- Vs 0

(2,00 (3,1)  (4,2)  (5,3)  (6,4)

oL 0 U 22 (33 W4 g
R A

Figure 1. Values of E? as a function of the number of quantd and the total angular
momentum; for spins = % In the abscissa we give the values ff whereas in the
ordinate those of, n defined as followsy = (E2 — 1) /4w — % when E2 is given by (4.12);

n = (E? — 1)/4w, when E? is given by (4.13). On top of each energy level we give the values
of N, ¢. The values ob are indicted by a dashed line and those:dfy a full line. The former

are finite while the later are infinitely degenerate. Taken from [17] by Quesne and Moshinsky.

4.2. Spin 1

Using the recurrence relation of equation (3.22) and the definitions (3.16) and (3.18)
of the matricesM, and D, as well as the enumeration procedure discussed between

equations (3.14) and (3.15), we can immediately write for spin 1 equation (3.19) in the
form

2 0 v wn 11 P11
0 -2 v w 22 22

h =2E . 4.14
U; Ui 0 O $12 P12 ( )
vlovh 0 0dLlea ¢21
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From (3.38) it is convenient to writg, ., in terms of irreducible representations of the
permutation group of two indexes as
o2 = %(¢12 + ¢21) o1 = %2(4512 — ¢21). (4.15)

For ¢11, ¢22, While they are not required by the permutation group as they correspond to
its symmetric representation, it is also convenient to carry out the same transformation, i.e.

¢ = %2@511 + ¢22) ¢ = %2@511 — ¢22). (4.16)
Thus we can write
[ $11 11 0 O o
22 11121 -1 0 O ¢
= 4.17
¢12 J210 0 1 1 Pp2) *17)
L ¢21 0 0 1 -14Lé¢puy
and from (4.14) the vector on the right-hand side satisfies the equation
- 0 2 V1 + U2 0 o+ b+
2 0 0 vy — V1 ¢ o
=2E . (4.18
L 0 v; - UI 0 0 oy LOEEN,
Now using the following short-hand notation for the kets
|+£) =[N £ 1, 1)jm) 11) =N, D)jm) 10) = IN(j, 0)jm) (4.19)

and similar ones with aound ket when we haveV — 1 instead ofN, we can write thep
functions in (4.18) as
¢+ =aiq|+) +a—[-) $-=a_i|+)+a_|-)
P2 = agzlD) #p11) = ap0). (4.20)
Substituting (4.20) into (4.18) and multiplying by the brds|, (1], (0] as required

in the corresponding row, we see that the matrix operator equation (4.18) becomes the
numerical operator

—2E 0 2 0 M+]_ 0 a4
0O —2E 0 2 M. 0 ||la
2 0 —2E 0 0 M+0 a— o
O 2 0 -2E Mo ||a. |=9° (4.21)

0
My M_4 0 0 —2E 0 ap]
0 0 Mo M_o 0 —2E apiy
where, noting that

v+ v =2v20(S - 1) vy — vy = 2V 2w (S’ - 1) (4.22)
with
S=1(c1+02) S =1(o2—01) (4.23)

we see that the symbols appearing in (4.21) have the values
M1 = (+]2v20(S - p)|1)

= —2V20[j(N + j +2)/2j + D]Y? (4.24)
M_1 = (—12V20(S - m)|1)
= 2V20[(j + (N — j + 1)/(2j + D]Y? (4.25)

Mo = (+12v/20(S" - 1)|0)
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= 2V20[(j + (N + j +2)/(2j + 1)]¥? (4.26)
M_o = (—|2v/20(S’ - 0)|0)
= 2V20[j(N — j +1)/(2j + D]Y2 (4.27)

Substituting (4.24)—(4.27) into (4.21) we then have a 6 matrix containing—2FE in the
diagonal and numerical expressions, and function®,0N, j, in the other terms, which
leads immediately, from equating to zero the determinant of the matrix in (4.21), to the
secular equation

(EY[E? —1—2w(N + D][E? — 1 —20(N + 2)] — 40°j (j + 1)} = 0. (4.28)

We still need to discuss the second type of state mentioned at the end of section 3 where
we start with¢ = j +n/2 — 1 which is equal toj asn = 2.

In this casep., ¢_ can only be expressed in terms of what we called in (4.19) the ket
I1). As ¢p2, ¢p11; have opposite parity they have to be expressed in terms of thetiet
and as the latter correspond to spin 1, they are symmetric under spin exchange, and only
the term¢yy) survives. Thus equation (4.18) becomes

—2FE 2 V1 + U2 0 ay|l)
2 —2E 0 U2 — V1 a_|1)
=0. (4.29
vi + vg 0 —2E 0 agz|+) + bzl -) (429)
0 vg - UI 0 —2F 0

Multiplying appropriately on the left-hand side by the brds$, (4|, (—| we get the
numerical equations

—2FEa, 4+ 2a_ + (1vy + v2|+)a[2] + (1vy + v2|—)b[2] =0
2a, —2Ea_ =0

(+]v] + vj|Day — 2Eap; =0

(—|v] + vj|l)a_ — 2Eby = 0.

(4.30)

From the last three equations we can substittg by, a— in the first and using the
hermiticity condition we obtain

{—4E% + 4+ [(Lva + val D)) + [(Llv1 + v2|-)]?)ar = 0 (4.31)
so that from (4.24) and (4.25) we get the square of the energy as
E?=1+42w(N +1). (4.32)

We now examine equations (4.28) and (4.32)w K« 1 we can disregard the?; (j +1)
term in (4.28) so thus the positive energies become

E~1+w(N+1 E~1+w(N+2 E~O0 (4.33)

while from (4.32) we also get the first relation in (4.33). The value= 0 is an infinitely
degenerate state, as all the kets independently of the valugsh\of j are eigenstates. They
correspond to what we have called a cockroach nest [18] and have no physical significance
as they involve both positive and negative energy states. The states close te kfdr

are, however, of physical interest, and thus it is worthwhile following their behaviour as a
function ofw and N. This is immediate for (4.32), but for (4.28) we have to solve a third
degree algebraic equation £¥ and thus this gives rise to a complicated spectrum.
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4.3. Spin3

Using the recurrence relation of equation (3.22) and the definitions (3.16) and (3.18) of the
matricesM,, and fo, whenn = 3, as well as the enumeration procedure discussed between

equations (3.14) and (3.15), we can immediately write for sfpiequation (3.19) in the
form

r3—-3E 0 0 0 V3 Vo V1 0 71 ¢u17
0 —1-3E 0 0 V2 U3 0 v1 $122
0 0 —-1-3E 0 V1 0 U3 V2 ¢212
0 0 0 —1-3E 0 U1 V2 U3 $201
vl v} vl 0 1-3E O 0 0 b1
v] vl 0 v} 0 1-3E 0 0 b121
vl 0 vl v} 0 0 13 0 bo1
L 0 vl v vl 0 0 0 —3-3E Ly
=0. (4.34)

To convert this matrix operator equation into numerical form we have to use the
developments (3.32), (3.33) which again appear, as indicated at the end of section 3, in
two forms, although for brevity in the case of spgnNe shall restrict ourselves to the first

form, i.e. we start witht = j + :;’ We use the compact notation

) =ING+ 3, 3)jm) =) =ING — 3. 3)jm) (4.35)
1) = ING — 3. 3)im. 1) 0) = IN(j — 3. 3)jm.0) (4.36)

where in the full notation of (3.30) we have suppressed the ind@#ich is irrelevant and

the patrtition [3], [21] associated with the spigland%, respectively. However, in the latter

case we have left the Yamanouchi symbol, which we designate by 1 and 0, that corresponds
to the full value of the first two spins. All the above kets will be denoted as angular as they
correspond taV quanta. For the kets witl — 1 quanta we shall use a round ket notation
and, because they have opposite parity, they will be denoted as

-4 =N =1 + 3. 3)jm) =) =N =1 — 3, 3)jm) (4.37)
1) =|N-1( + %, Hjm, 1) 0)= N —1( + 3, 1)jm.0).  (4.38)

Now we shall make use of the notations (3.38), (3.39) and (3.40) to transform the states
@r,1,7, INLO ¢f,r, wherew is unnecessary and the partitigh already indicates the value of
the index: as we remarked above. is replaced by thet above thep. Thus, from well
known considerations [19], we have

1 O 0 0
$111 o 1 _1 _1 ¢1jl
@122 V3 V6 V2 bp3)
= 1 1 1 4.39
$212 0 Bk 2 45[51]1 (4:39)
221 0 %3 % 0 ¢E§1]0
while
2 1 -
112 0 -3 /3 0 P10
1 1 1 —
ool I R I | (440
= — — 0 [3]
222 {)z Joé ‘/g’ 1 222
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Substituting the eight component vector in (4.34) by the relation indicated in (4.39) and

(4.40) we obtain the equation

r3—-3E 0 0 0 y -B o 0 T ¢é111 7
0 -1-3E 0 0 ~ Ry BB e a 9%
0 0 —1-3E 0 -3 B —%3/3 B o
0 0 0 -1-3E € 2y %3;/ —y Pbio
yo—iyt S e 13E o 0 0 || %o
gt Ll 5t —\/gyT 0 13E 0 0 P
af Fat =Bt oyt 0 0 1-3E 0 b3
L 0 of B —yf 0 0 0 —3-3E 1L ¢220 |
=0 (4.41)
where the Greek letters are given by
o= %3(1)1 + v2 + v3) B= %5(2')3 —v1—V2) 4.42)

y=hi—v)  S=3itv)-3u3  e=u;
with the same definition fow!, 87, 1, 87, €' with v, replaced byv!.

We note that the matrix in equation (4.41) differs from (4.34) only by a numerical
orthogonal transformation and thus the former must also be invariant under permutations
P, P, as the latter was derived from equation (2.11) which has this property. Thus if we

write equation (4.41) in the compact form

M—-3ED)® =0 (4.43)
we have from the fact that
PP M(P.Py) "t = M (4.44)
that P, P, ® is also a solution of equation (4.43).
We can then sum all of these solutions to conclude that
M—-3ED)yP® =0 (4.45)

whereP is the symmetrizer of (3.37). Thus the components of our state are invariant under
permutation.

Taking into account the definitions (4.35)—(4.40) for the kets and their coefficients, as
well as the effect ofP on the¢ indicated in (3.42), we conclude that the components of
P¢ can only be of the form indicated below

P¢111 = ar1a|+) + bi1a|—)
P = appanlD) + aghpol0)
Poia110 = bipagol®) + bogpl D) P = apinlD + app010)
Pz = aggl+) + bgl—) Poazz = azzal+) + bazal —).

We have used, as before, both the letterand b if they are required to distinguish
different terms in (4.46).

If we substitute (4.46) into (4.41) and multiply appropriately the left-hand sides by the
bras (+[, (—|, (1], (Ol; (+], (—[, (1], (O], we obtain a system of 16 linear equations in

the coefficients d111, b111, a[Jg], bfg], “El]l- a[“;l]o, blzlll’ bEl]Ov b Ppror A 900

Py = agl+) + bg|—)

7)¢[;1]0 = b[ng]OIO) + b[+21]1|1> (4.46)
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ag), b[‘S], az22, ba22), and the corresponding matrix can be written in the form given in the
appendix, where the symbols are the functiongpV, j given below,

 [eow+i+DHei+3]"  [ewmiv+i+H]"
c=— : d=— : (4.47)
2(j+1) G+D
. . . 15\ ] 1/2 B . . 1 . 1/2
oo (2w)j(2j=1)(N—j + 3) . (2w)2j —D(N —j+3)2j+3)
6( +1D(-1D i 3+DG -1
(4.48)
Co)N+j+ DG+ (o) j(N—j+ 51"
h=_|2 A TAY g=| 2T T (4.49)
J 1 i G-=1
)i+ - j+ D] )2 — DN +j+ 5"
ME|:0) ST 2} yE—|:w J AT 2} . (4.50)
j j
They are determined from (3.45) and (3.46) together with the fact that
(so frlow|5o fr) (4.51)

can be obtained straightforwardly by expressingfr) in terms of products of spirg
functions [19].

We found that mathematics could not give the eigenvalues or even the determinant of
the matrix in the appendix in a symbolic form. Thus the value& dfave to be calculated
numerically for fixedw, N, j. In section 5 we shall only discuss qualitatively the behaviour
of E2.

5. Conclusion

The reader may find it strange that we started this paper with a discussion of five articles
that are over 50 years old, and then proceeded to make an analysis of the problem with
techniques developed mainly by the authors and their collaborators in the last few years.

The reason for this is that while the problem of a relativistic particle with arbitrary spin
has given rise to an extensive literature, our approach is quite different from that followed
by other authors and thus we mentioned only the literature we actually used.

In our analysis we start with a single relativistic free-particle equation with arbitrary
spin, in analogy with what was done for a system of many %pparticles by Moshinsky
et al [12], following an approach by Barut [11].

We need, however, to impose the constraint that the wavefunction is invariant under
permutation of the spin indices if we wish the large component of our wavefunction to be
restricted to the maximum spin feasible.

Once we have this equation we can introduce an interaction; we chose the Dirac
oscillator one as it is probably the simplest. This allowed us then to develop the full
formalism of a relativistic particle with arbitrary spin for a particular type of interaction.

As we have no physical example of a relativistic particle vathitrary spin in a Dirac
oscillator potential, we shall not give graphs of the energy levels for the gasel s = g
as functions ofw, N, j, that can be derived from the secular equations associated with the
matrices in (4.21) and in the appendix. It is interesting, however, to note the differences
between a non-relativistic oscillator with spinand a relativistic one. In the former case
all that happens is that the degeneracy of the levels increases by a factofl2whereas
in the latter the complexity of the spectra increases spectacularly with spin, as can be seen
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when we compare the secular equations derived from the matrices in (4.7), (4.10), with
those in (4.21), (4.29) and in the appendix, associated withl, 1, g respectively.
We plan to extend the analysis presented here to other interactions of relativistic particles

with higher spin and, in particular, to those in which comparison with experiment is feasible.

Appendix

This is a 16x 16 numerical matrix corresponding to= 3, whose determinants gives the
secular equation from which we can obtain the enefggs a function of the number of
guantan, the total angular momenturhand the frequency. We first write the matrix in
terms of four 8x 8 matrices as

D* — 3El A
A D~ — 3El
Table 1(a)
where
-3 -
3
-1
-1
+
D™= -1
-1
-1
L -1
Table 1(b)
-1 -
1
1
_ 1
D™= 1
1
-3
L -3
Table 1(c)

while A is the transposition of the 88 matrix A whose value in terms of the coefficients
(4.47)—(4.50) is given below:

0 c c 0 d 0 0 0 7

0 e e O g h 0 0

0 _Téc %c 0 %d 0 d 0

-1 -2 2 2

A_ 0 7€ 33° 0 738 Tah g h
- 0 2q q 0 tu =ty =2ty iy

3 3/2 NG V6 V2

¢ 0 0 ¢ 0 0 0 O

%]-q 0 20 %q 10 —(1) —? 10
R A L S U b
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